Welcome to Math 39100
Jan. 25.2023 : LECTURE 1
§1.2 and 1.3 Solutions and Classification of
Differential Equations
Consider the D.E: (This D.E models a population of $y^{\prime}=\frac{d y}{d t}=a y-b$ where a, b an sone given constants.

* can be used to modal object falling from sons height.
Consider the equation

$$
\frac{d p}{d t}=0.5 p-450
$$

which describes the interaction of certain populations of field mice and owls
Goal: What is the solution to the equation above?

$$
\begin{aligned}
& \frac{d p}{d t}=\frac{p-900}{2} \\
& \int \frac{1}{p-900} d p=\int \frac{1}{2} d t \\
& \begin{aligned}
\text { Separation of }
\end{aligned} \\
& \int \quad \text { variables }(2.2)
\end{aligned}
$$

Review:

$$
\Longrightarrow \ln |P-900|=\frac{1}{2} t+C
$$

Differentiation and Integration (u-sub.

$$
\begin{aligned}
& \ln (\rho-900)=\frac{1}{2} t+C \\
& P-900=e^{\frac{1}{2} t} \cdot e^{C} \\
& P-900=C e^{\frac{1}{2} t} \\
& P(t)=C e^{\frac{1}{2} t}+900
\end{aligned}
$$

let $e^{c}=C$.

If we impose an initial condition (to, po then we Con solve for C.

Common Terms:
(i) ODE (ordinary D.E):= a differential Eq. with only one independent variable.
(ii) PDE (partial Diff. Eq):= D.E. with mare than ore indef variable.

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$ w.r.t

The Heat x. Equation.
(iii) Order: $=$ highest derivative that appears in the equation.
eg.
$y^{\prime \prime \prime}+2 e^{t} y^{\prime \prime}+y y^{\prime}=t^{4}$
order: 3
(iv) Linear:= linear Diff. Eq has the form

$$
F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)=0 .
$$

(linear in the variables $y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}$)
Not linear: $e^{y}, y y^{\prime}, \sin (y)$
(i) State the order of the siva $D \in$.
(ii) Determine whether it is linear or nonlinear.
a) $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t \quad$ order: 2 , Nonlinear
b) $\frac{d^{4} y}{d t^{4}}+\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=1 \quad$ order: 4, linear
c) $\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t} \quad$ order: 2 , Nonlinear
d) $\frac{d^{7} y}{d t^{7}}+t \frac{d y}{d t}+\cos ^{6}(t)=t^{3}$. order 7 : linear
e) $u_{x x x}+5 u_{t} u+u_{t t}=7$ order: 3 ; Norline ar $\frac{\partial^{3} u}{\partial x^{3}}$

How to Find solutions to 1 fiver D.E:
Suppose $y^{\prime}+4 y=0$. Show that $y=e^{-4 t}$ is a solution.

$$
y^{\prime}=-4 e^{-4 t}
$$

Plugin y and y^{\prime} into the given e_{q} :

$$
\begin{aligned}
& -4 e^{-4 t}+4 e^{-4 t} \stackrel{?}{=} 0 \\
& \therefore \quad y=e^{-4 t} \text { is a solution. }
\end{aligned}
$$

In each of Problems 11 through 13 , determine the values of r for which the given differential equation has solutions of the form $y=e^{r t}$.
11. $y^{\prime}+2 y=0$
12. $y^{\prime \prime}+y^{\prime}-6 y=0$

$$
\left.\begin{array}{l}
y^{\prime}=r e^{r t} \\
y^{\prime \prime}=r^{2} e^{r t}
\end{array}\right) \quad \begin{gathered}
y^{\prime \prime}+y^{\prime}-6 y=0 \\
r^{2} e^{r t}+r e^{r t}-6 e^{r t}=0 \\
e^{r t}\left(r^{2}+r-6\right)=0
\end{gathered}
$$

$$
\begin{gathered}
r^{2}+r-6=0 \\
(r+3)(r-2)=0 \\
r=-3,2 \\
y_{1}=e^{-3 t} \quad, \quad y_{2}=e^{2 t}
\end{gathered}
$$

Later: General solution $\Rightarrow y=c_{1} y_{1}+c_{2} y_{2}$

$$
\Rightarrow y=c_{1} e^{-3 t}+c_{2} e^{2 t}
$$

e). Given $u(x, t)=e^{-3 t} \sin (2 x)$.

Show that $u(x, t)$ is a solution of $U_{t}=9 U_{x x}$.
$U_{t} \ldots$

To be continued...

