Math 39100: Mar. 20. 2023 : Lecture 14

$$
\oint 3.7 / 3.8 \text { comr. }
$$

Recall:

$$
\begin{aligned}
& \underline{M} \int u^{\prime \prime}+\sqrt{0} u^{\prime}+\sqrt[L]{ } u=G(t) \\
& M=\frac{w}{g} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { or } 32 \mathrm{ft} / \mathrm{s}^{2} \\
& \gamma=\frac{\text { Resist. force }}{\text { velocity }} \\
& K=\frac{w}{L} \\
& U^{\prime}(0)=\text { initial position } \\
& U^{\prime}(0)=\text { initial velocity }
\end{aligned}
$$

A weight of $\frac{1}{10} N$ stretches a spring $5 \mathrm{~cm}(1 / 20 \mathrm{~m})$. If the mass is set in motion from its equilibrium position with
a downward velocity of $10 \mathrm{~cm} / \mathrm{s}\left(\frac{1}{10} \mathrm{~m} / \mathrm{s}\right)$, and if there is no damping, at what time does the mass first return to its equilibrium position?

$$
\begin{array}{ll}
m=? & w=m g \Rightarrow \frac{w}{g}=m \\
r=0 & \frac{\frac{1}{10}}{9.8}=m \Rightarrow m=\frac{1}{98} \\
k=? & w=k L \Rightarrow k=\frac{w}{L}=\frac{\frac{1}{10}}{\frac{1}{20}}=2 \\
G(t)=0 & \\
L=\frac{1}{20} & m u^{\prime \prime}+k u=0
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{18} u^{\prime \prime}+2 u=0, \quad u(0)=0 \\
& X^{\prime}(0)=\frac{1}{10} \mathrm{~m} / \mathrm{s} \\
& u^{\prime \prime}+196 u=0 \\
& r^{2}+196=0 \\
& r= \pm \sqrt{196} i= \pm 14 i \\
& U(t)=C_{1} \cos (14 t)+C_{2} \sin (14 t)=C_{2} \sin (14 t) \\
& u(0)=0 \Rightarrow C_{1}=0 \\
& u^{\prime}(t)=14 c_{2} \cos (14 t) \\
& U^{\prime}(0)=\frac{1}{10} \Rightarrow \frac{1}{10}=14 c_{2} \Rightarrow C_{2}=\frac{1}{140} \\
& \Rightarrow U(t)=\frac{1}{140} \sin (14 t) \\
& N^{2(t)} \\
& \text { Frequency }=\omega \\
& =14 \\
& \text { Peried }=\frac{2 \pi}{\omega} \\
& =\frac{2 \pi}{14}
\end{aligned}
$$

When $f=\frac{\pi}{14}$, the mars first returns to
its equilithoun position.

Free Oscillation: No damping or No External force:
$\left(\operatorname{sim}_{n \mu^{l e} m^{\prime \prime}}^{\operatorname{mic}} m u^{\prime \prime}+k u=0\right.$
motion)

$$
\begin{aligned}
& u^{\prime \prime}+\frac{k}{m} u=0 \\
& r= \pm \sqrt{\frac{k}{m}} i \quad \text { let } \sqrt{\frac{k}{m}}=\omega .
\end{aligned}
$$

$$
u(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)
$$

Using Sum of two angles identity we attain,

$$
u(t)=A \cos (\omega t)+B \sin (\omega t)
$$

$$
\text { Amplitude }=R=\sqrt{A^{2}+B^{2}}
$$

Frequency : ω and period $=\frac{2 \pi}{\omega}$

FIGURE 3.7.5 Damped vibration; $u=R e^{-\gamma t / 2 m} \cos (\mu t-\delta)$.
Note that the scale for the horizontal axis is μt.

FIGURE 3.7.7 Vibration with small damping (solid blue curve) and with no damping (dashed green curve). Both motions have the same initial conditions: $u(0)=2, u^{\prime}(0)=0$.
8. A hanging spring is stretched 18 inches (1.5 feet) by a mass with weight 60 pounds. Set up the initial value problem (differential equation and initial conditions) which describes the motion, neglecting frictions, when the weight starts from rest at the equilibrium position and is subjected to an external force of $5 \cos (7 t)$. (Recall that g, the acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$.)

$$
m u^{\prime \prime}+m k^{\prime}+k u=G(t) \text {, }
$$

$$
\begin{array}{ll}
m=\frac{w}{g}=\frac{60}{32} & u(0)=0 \\
u^{\prime}(0)=0
\end{array}
$$

$$
\begin{aligned}
& r=0 \\
& K=\frac{w}{L}=\frac{60}{1.5}=40
\end{aligned}
$$

$$
\begin{gathered}
\frac{15}{8} u^{\prime \prime}+40 u=5 \cos (7 t) \\
u(0)=u^{\prime}(0)=0
\end{gathered}
$$

CHY: Higher Order D.E (Y.2 and 4.3)
4.2 Higher Order linear Homage. D. E. with Constant Caff:

Consider the $n^{\text {th }}$ order linear homogeneous differential equation

$$
\begin{equation*}
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 \tag{1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real constants and $a_{0} \neq 0$. From our knowledge of second-order linear equations with constant coefficients, it is natural to anticipate that $y=e^{r t}$ is a solution

Find the general solution of

$$
y^{(4)}-y=0
$$

Char. Poly: $r^{4}-1=0$

$$
\begin{aligned}
& \left(r^{2}+1\right)\left(r^{2}-1\right)=0 \\
& \underbrace{\left(r^{2}+1\right)}(\underbrace{r+1)} \underbrace{(r-1)=0}_{r_{3}= \pm i}
\end{aligned}
$$

$$
y=C_{1} \underbrace{\cos (t)}_{y_{1}}+C_{2} \underbrace{\sin (t)}_{y_{2}}+C_{3} \underbrace{-t}_{y_{3}}+C_{4} \underbrace{e^{t}}_{y_{4}}
$$

Also find the solution that satisfies the initial conditions

$$
y(0)=\frac{7}{2}, \quad y^{\prime}(0)=-4, \quad y^{\prime \prime}(0)=\frac{5}{2}, \quad y^{\prime \prime \prime}(0)=-2
$$

Finish re...

Find the general solution of

$$
y^{(4)}+2 y^{\prime \prime}+y=0
$$

Char. poly: $\quad r^{4}+2 r^{2}+1=0$

Rational Root Test: IF $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
Then the possible roots are:

$$
\frac{p}{q}= \pm \frac{\text { festers of } a_{0}}{\text { factors of } a_{n}}
$$

$a_{0}=1, a_{n}=1 \quad$ posisink roots: $\{ \pm 1\} \rightarrow$ these ar not roots.

$$
\begin{aligned}
& r^{4}+2 r^{2}+1=0 \\
& \left(r^{2}+1\right)\left(r^{2}+1\right)=0
\end{aligned}
$$

$$
\begin{gathered}
\left(r^{2}+1\right)^{2}=0 \\
r= \pm i \quad(\text { repeated }) \\
y=c_{1} \cos (t)+c_{2} \sin (t)+C_{3} t \cos (t)+C_{4} t \sin (t)
\end{gathered}
$$

