Math 39100: Feb.22. 2023 : Lecture 8

Exam 1: Monday, March 6
warm up: Solve $2 y^{\prime \prime}+7 y^{\prime}-4 y=0$.
char poly: $2 r^{2}+7 r-4=0$

$$
\begin{aligned}
& (2 r-1)(r+4)=0 \\
& r_{1}=\frac{1}{2}, \quad r_{2}=-4 \\
& y_{1}=e^{\frac{1}{2} t}, \quad y_{2}=e^{-4 t}
\end{aligned}
$$

$$
y=C_{1} e^{\frac{1}{2} t}+C_{2} e^{-4 t} \quad \text { family of solutions. }
$$

\{ 3.2 cont.
Suppose We have IVP: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$,

$$
y\left(t_{0}\right)=y_{0} \text { and } y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

The solution: $y=c_{1} y_{1}+c_{2} y_{2}$.

$$
y^{\prime}=c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}
$$

$$
y\left(t_{0}\right)=y_{0} \Rightarrow \int^{n x^{\prime \prime}} c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}^{\prime \prime} y_{2}\left(t_{0}\right)=y_{0}
$$

$$
y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \Rightarrow \quad C_{1} y_{1}^{\prime}\left(t_{0}\right)+C_{2} y_{2}^{\prime}\left(f_{0}\right)=y_{0}^{\prime}
$$

Determinate :

$$
\left.\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array} \right\rvert\,=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

9 This is known as the wronskian
Def:
Wronkian of faro solutions $y_{1}, y_{2}: W\left(y_{1}, y_{2}\right)=W$

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

IF $W \neq 0$, then (i) Find unique values for C_{1} and C_{2}.
(ii) Solutions y_{1} and y_{2} are called fundamental set of solutions.
(iii) y_{1} and y_{2} are linearly independent.

Find values for c_{1} and $c_{2}: C_{1}=\frac{\left|\begin{array}{ll}y_{0} & y_{2} \\ y_{0}^{\prime} & y_{2}^{\prime}\end{array}\right|}{W}=\frac{y_{0} y_{2}^{\prime}-y_{2} y_{0}^{\prime}}{W}$

$$
C_{2}=\frac{\left|\begin{array}{ll}
y_{1} & y_{0} \\
y_{i}^{\prime} & y_{i}
\end{array}\right|}{W}=\frac{y_{1} y_{0}{ }^{\prime}-y_{0} y_{1}{ }^{\prime}}{w}
$$

Theorem 3.2.3

Suppose that y_{1} and y_{2} are two solutions of equation (2)
$L=$ differential

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and that the initial conditions (3)

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

are assigned. Then it is always possible to choose the constants c_{1}, c_{2} so that

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

satisfies the differential equation (2) and the initial conditions (3) if and only if the Wronskian

$$
W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

is not zero at t_{0}.
we found that $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{-3 t}$ are solutions of

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

Find the Wronskian of y_{1} and y_{2}.

$$
W\left(y_{1}, y_{2}\right)=W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

$$
=-e^{-s t}
$$

Show that $y_{1}(t)=t^{1 / 2}$ and $y_{2}(t)=t^{-1}$ form a fundamental set of solutions of

$$
\begin{array}{ll}
& 2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, \quad t>0 . \\
y_{1}=t^{1 / 2} & y_{2}=t^{\prime} \\
y_{1}^{\prime}=\frac{1}{2} t^{-1 / 2} & y_{2}^{\prime}=-t^{-2}
\end{array}
$$

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
t^{1 / 2} & t^{-1} \\
\frac{1}{2} t^{-1 / 2} & -t^{-2}
\end{array}\right|
$$

$$
=-t^{1 / 2} \cdot t^{-2}-\frac{1}{2} t^{-1} \cdot t^{-1 / 2}
$$

$$
=-t^{-3 / 2}-\frac{1}{2} t^{-3 / 2}
$$

$$
=-\frac{3}{2} t^{-3 / 2} \neq 0
$$

Thus, y_{1} and y_{2} form a fundamental set of solution.

Theorem 3.2.1 | (Existence and Uniqueness Theorem)

Consider the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \tag{4}
\end{equation*}
$$

where p, q, and g are continuous on an open interval I that contains the point t_{0}. This problem has exactly one solution $y=\phi(t)$, and the solution exists throughout the interval I.

Theorem 3.2.2 | (Principle of Superposition)
If y_{1} and y_{2} are two solutions of the differential equation (2),

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then the linear combination $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any values of the constants c_{1} and c_{2}.
proof: Assume y_{1} and y_{2} are solutions to

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 . \tag{a}
\end{equation*}
$$

Then $L\left[y_{1}\right]=y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0$ and

$$
l\left[y_{2}\right]=y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0 \text {. }
$$

we went to show that $L\left[c_{1} y_{1}+c_{2} y_{2}\right]$ solves the eq. (1).

$$
\begin{aligned}
& L\left[c_{1} y_{1}+c_{2} y_{2}\right]=\left[c_{1} y_{1}+c_{2} y_{2}\right]^{\prime \prime}+p(t)\left[c_{1} y_{1}+c_{2} y_{2}\right]^{\prime}+ \\
& q(t)\left[c_{1} y_{1}+c_{2} y_{2}\right] \\
&= c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}+p(t) c_{1} y_{1}^{\prime}+p(t) c_{2} y_{2}^{\prime} \\
&+q(t) c_{1} y_{1}+q(t) c_{2} y_{2} \\
&=C_{1}\left[y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}\right]+c_{2}\left[y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}\right]
\end{aligned}
$$

$$
=C_{1} L\left[y_{1}\right]+C_{2} L\left[y_{2}\right]
$$

Since $L\left[y_{1}\right]=0$ and $L\left[y_{2}\right]=0$

This, we have $L\left[c_{1} y_{1}+c_{2} y_{2}\right]=0$.

Theorem 3.2.7 | (Abel's Theorem) ${ }^{4}$

If y_{1} and y_{2} are solutions of the second-order linear differential equation

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{22}
\end{equation*}
$$

where p and q are continuous on an open interval I, then the Wronskian $W\left[y_{1}, y_{2}\right](t)$ is given by

$$
\begin{equation*}
W\left[y_{1}, y_{2}\right](t)=c \exp \left(-\int p(t) d t\right)=c e^{-\int p(t) d t} \tag{23}
\end{equation*}
$$

where c is a certain constant that depends on y_{1} and y_{2}, but not on t. Further, $W\left[y_{1}, y_{2}\right](t)$ either is zero for all t in I (if $c=0$) or else is never zero in I (if $c \neq 0$).
proof: y_{1} and y_{2} are solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
Then, $\quad y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \quad(e q 1) \quad$ and

$$
y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0 .\left(e_{2} 2\right)
$$

Multiply (eq) by $-y_{2}$ and $(e q 2)$ by y_{1}. Then

$$
\begin{array}{r}
-y_{1}^{\prime \prime} y_{2}-p(t) y_{1}^{\prime} y_{2}-q(t) y_{1} y_{2}=0 \\
y_{1} y_{2}^{\prime \prime}+p(t) y_{1} y_{2}^{\prime}+q(t) y_{1} y_{2}=0
\end{array}
$$

$$
\begin{aligned}
& \underbrace{y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}}_{W^{\prime}}+\underbrace{p\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)}_{W}=0 \\
& W^{\prime}+p w=0 \\
& \frac{d \omega}{d t}+p \omega=0 \quad \longleftarrow \text { Separable }_{\xi} \\
& \int \frac{d w}{w}=-\int p d t \\
& \ln |w|=-\int P d t+C \\
& W=C e^{-\int p(t) d t} \\
& W \neq 0 \text { unless } c=0 \text {. }
\end{aligned}
$$

$\omega>0$,
eq. Given $y^{\prime \prime}-4 y^{\prime}+3 y=0$. Use Abel's theorem to compute the wronskien of the solutions.

$$
p(t)=-4, \quad W=c e^{-\int-y d t}=c e^{4 t}
$$

