Math 39100: Feb. 22. 2023: LECTURE 8

Exam 1: Monday, March 6

Char poly:
$$2r^2 + 7r - 4 = 0$$

 $(2r - 1)(r + 4) = 0$

$$Y_1 = \frac{1}{2}, \quad Y_2 = -4$$

$$Y_1 = e^{\frac{1}{2}t}, \quad Y_2 = e^{\frac{1}{4}t}$$

Suppose We how
$$IVP: y'' + P(t)y' + Q(t)y = 0$$
,
$$y(to) = y_o \quad and \quad y'(to) = y_o'.$$

The solution:
$$y = C_1 y_1 + C_2 y_2$$

 $y' = C_1 y_1' + C_2 y_2'$

$$y(\ell_0) = y_* \implies \begin{cases} \frac{1}{2} \times \frac{1}{2} & \frac{1}{2} y_* \\ C_1 y_1(\ell_0) + C_2 y_2(\ell_0) = y_0 \end{cases}$$

$$y'(t_0) = y'_0 \implies \left(c, y'_1(t_0) + c_2 y'_2(t_0) = y'_0 \right)$$

Determinate:
$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1y_2' - y_2y_1'$$
This is known as The Wronskian

Wronkian of two solutions 4, 42: W(4, 42) = W

$$W = \begin{vmatrix} 9_1 & 9_2 \\ 9_1' & 9_2' \end{vmatrix} = 9_1 y_2' - 9_2 y_1'$$

IF W =0, then (i) Find unique values for C1 and C2.

(ii) solutions 4, and 42 are called fundamental set of solutions.

(iii)
$$y_1$$
 and y_2 are linearly independent.

Find values for (, and C_2 :
$$C_1 = \frac{\begin{vmatrix} y_0 & y_2 \\ y_0' & y_2' \end{vmatrix} = \frac{y_0 y_2' - y_2 y_0}{W}$$

$$C_{2} = \frac{\begin{pmatrix} 9, & 4_{0} \\ 4', & 9' \end{pmatrix}}{W} = \frac{4, 4_{0}' - 4_{0} 4, 4_{0}'}{W}$$

Theorem 3.2.3

Suppose that y_1 and y_2 are two solutions of equation (2)

and that the initial conditions (3)

$$y(t_0) = y_0, \quad y'(t_0) = y_0'$$

are assigned. Then it is always possible to choose the constants c_1 , c_2 so that

$$y = c_1 y_1(t) + c_2 y_2(t)$$

satisfies the differential equation (2) and the initial conditions (3) if and only if the Wronskian

$$W[y_1, y_2] = y_1 y_2' - y_1' y_2$$

is not zero at t_0 .

we found that $y_1(t) = e^{-2t}$ and $y_2(t) = e^{-3t}$ are solutions of

$$y'' + 5y' + 6y = 0.$$

Find the Wronskian of y_1 and y_2 .

$$W(y_1,y_2) = W = \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}$$

$$= \begin{vmatrix} -2e & -3t \\ e & e \end{vmatrix}$$

$$-2e - 3e$$

$$= -3e \cdot e^{-3t} + 2e^{-3t}e^{-3t}$$

$$= -3e^{-st} + 2e^{-st}$$

Show that $y_1(t) = t^{1/2}$ and $y_2(t) = t^{-1}$ form a fundamental set of solutions of $2t^2y'' + 3ty' - y = 0$, t > 0.

$$y_1 = t^{1/2}$$

$$y_2 = \tilde{t}^{1/2}$$

$$y_2 = -\tilde{t}^{2/2}$$

$$y_2 = -\tilde{t}^{2/2}$$

$$W(9_{1}, 9_{2}) = \begin{vmatrix} y_{1} & y_{2} \\ y_{1} & y_{2} \end{vmatrix} = \begin{vmatrix} t^{1/2} & \overline{t}^{1/2} \\ \frac{1}{2}\overline{t}^{1/2} & -\overline{t}^{2} \end{vmatrix}$$

$$= -t^{1/2}\overline{t}^{2} - \frac{1}{2}\overline{t}^{3/2}$$

$$= -\frac{3}{2}t^{2} + 0$$

Thus, 4, and 42 form a fundamental set of solution

Theorem 3.2.1 (Existence and Uniqueness Theorem)

Consider the initial value problem

$$y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0,$$
 (4)

where p, q, and g are continuous on an open interval I that contains the point t_0 . This problem has exactly one solution $y = \phi(t)$, and the solution exists throughout the interval I.

Theorem 3.2.2 | (Principle of Superposition)

If y_1 and y_2 are two solutions of the differential equation (2),

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

then the linear combination $c_1y_1 + c_2y_2$ is also a solution for any values of the constants c_1 and c_2 .

Then
$$L[4,] = y_1'' + P(+)y_1' + q(+)y_1 = 0$$
 and

$$L[C, Y, +C, Y_2] = [C, Y, +C, Y_2]'' + P(+)[C, Y, +C_2Y_2]' +$$

$$= c_1 y_1'' + c_2 y_2'' + p(t) c_1 y_1' + p(t) c_2 y_2'$$

$$= C_{1} \left[y_{1}'' + p(t)y_{1}' + q(t)y_{1} \right] + C_{2} \left[y_{2}'' + p(t)y_{2}' + q(t)y_{3}' \right]$$

Theorem 3.2.7 | (Abel's Theorem)⁴

If y_1 and y_2 are solutions of the second-order linear differential equation

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$
(22)

a

where p and q are continuous on an open interval I, then the Wronskian $W[y_1, y_2](t)$ is given by $W[y_1, y_2](t) = c \exp\left(-\int p(t) dt\right), = c e^{\int p(t) dt}$ (23)

where
$$c$$
 is a certain constant that depends on y_1 and y_2 , but not on t . Further, $W[y_1, y_2](t)$ either is

zero for all t in I (if c = 0) or else is never zero in I (if $c \neq 0$).

proof:
$$y$$
, and y_2 are solutions to $y'' + p(t)y' + q(t)y = 0$.

Then, $y_1'' + p(t)y_1' + q(t)y_1 = 0$ (eq.) and

$$y_2'' + p(t) y_2' + q(t) y_2 = 0 \cdot (e_{72})$$

$$y_{1}y_{2}'' - y_{1}''y_{2} + P(y_{1}y_{2}' - y_{1}'y_{2}) = 0$$
 W'

$$\frac{dw}{dt} + \rho w = 0$$

$$\frac{dw}{dt} + \rho w = 0$$

$$\frac{dw}{dt} = -\int P dt$$
Linear

$$l_n(w) = -\int P dt + C$$

W7U,

eq. Given
$$y'' - 4y' + 3y = 0$$
. Use Abel's Hearn

to compute the wranskian of the solutions.

 $P(t) = -4$, $W = Ce = Ce$