Math 39100-Homework Problems

REQUIRED TEXT: Boyce, Diprima and Meade Elementary Differential Equations and Boundary Value Problems, 11th Edition and 10th Edition

Sections	11th Edition	10th Edition
1.3: Classifications of DE	pg. 22 # 1, 2, 4, 5, 6, 11-13, 16, & 17.	1, 2, 4, 5, 6, 16, & 17.
2.2 Separable equations	pg. 38 #1-3, 5-7, 9, 10, 11, 14, & 15.	3-17 odd problems only
	pg. $39 \# 26, 27, 28, 29, 30$	31-37 odd problems only
2.1 Meth. of Integrating Factors	pg.31 # 1-4, 6, 8, 9, 10, & 12	1-11 (odd), 13-19 (odd) & 31
2.6 Exact Equations	pg.75 # 1-4, 6, 7, 9 & 14.	1, 3, 4, 5, 7, 9, 11 & 13.
2.3 Modeling	pg.47 # 1, 2, 5, 6, & 7	1, 2, 4, 7, 8, & 9.
2.9 Ch.RevMiscellaneous	pg.100 # 1-10, 12, 14, 22	1-6, 8-11, 15, & 29
2.9 Reduction of Order	pg.101 # 28, 29, 32-34	36, 37, 41, 42, 43, & 48.
3.1 Homog. w/ Const. Coeff.	pg.109 # 1-4, 7, 8, 11, 12, 16.	1-15 (odd), & 16
3.2 The Wronskian	pg. 119 # 1, 3, 4, 11, 14, 18, & 29	1, 3, 5, 14, 16, & 38
3.3 Complex Roots	pg.125 #1-3, 5-7, 12-14.	1-4, 7-10, 17-20.
3.4 Rep. Roots & Redu. of Ord.	pg.132 # 1-3, 5-8,9, 10, 18-20.	1-4, 6-10, 11, 12, 23-25.
3.5 Undetermined Coefficients	pg.141 #1-9, 11-13, 16-20 (a only)	1-10, 13, 15-17, 21, 23-26 (a only)
3.6 Variations of parameters	pg. 146 # 1, 2, 4-8, & 10.	1, 2, 5-7, 10, & 13.
3.7 Spring problems	pg.157 #3, & 4	6, & 7.
3.8 Spring problems	pg.167 #4, & 6	6, & 10.
4.2 Higher Order	pg.180 # 1-3, 8-12, 15 & 20.	1-3, 11, 12, 14, 15, 17, & 21.
4.3 Higer Order Undet. Coeff:	pg.184 # 1-4, 7, 10-13.	1-3, 9, 13, 14, 17, & 18.
5.1 Review of Power Series:	pg.195 # 1-4, 6, 7, 8, & 14.	1, 2, 3, 5, 7, 8, 11, & 14.
5.2 Ordinary Point Series, Part I:	pg.204 #1-4, 6-8(a,b, c only) & 11	1-3, 5-8 (a, b, c only) & 14.
5.3 Ordinary Point Series, Part II:	pg.209 # 1-3	1-4.
5.4 Euler Equations	pg.218 # 3-7, 9, & 11.	2, 3, 5, 6, 7, 9, 13 & 15
5.5 Regular Singular Point Series:	pg.223 # 1-3, 5 & 6.	1, 2, 3, 6, & 7.
6.1 Laplace Transform part I:	pg.247 # 4, 5, 8, 9, 12, 16-17.	5, 6, 7,8, 11-13, 21-22.
6.2 Laplace Transform part II:	pg.255 # 1, 3, 5, 8-12, & 16.	1-4, 11-16, 22, & 23.
10.1 Boundary Value Problems:	pg.468 # 1, 3, 5, & 6.	1, 3, 5, & 6.
10.2 Fourier Series:	pg.476 # 13-16, 18, 19-20 (a, b only)	13-16, 18, 19-20 (a, b only)
10.4 Even & Odd Functions:	pg.487 # 7, 9,15-18, 20-22.	7-9, 15-22.
10.5 Separation of Variables	pg.495 # 1, 2, 3, 5, & 6.	1, 2, 3, 5, & 6.
10.5 Separation of Variables:	pg.495 # 7-12.	7-12.

Additional Homework Problems

Section 3.7/3.8 Example 1: A weight of $\frac{1}{10}N$ stretches a spring 5cm (1/20 m). If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s($\frac{1}{10}$ m/s), and if there is no damping, at what time does the mass first return to its equilibrium position?

Section 5.1 Example 1: Determine the recursive formula: $\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} 2a_n x^n = 0.$

Section 5.2 Example 1: For the differential equation: (3-x)y'' + y' + y = 0, compute the recurrence formula for the coefficients of the power series centered at $x_0 = 0$ and use it to compute the first four nonzero terms of the solution with y(0) = -2 and y'(0) = 3.

Section 5.2 Example 2: For the differential equation y'' - xy' - y = 0, compute the recursion formula for the coefficients of the power series solution centered at $x_0 = 1$.

Section 5.4 Example 1: Compute the general solution of $x^2y'' + 3xy' - 35y = 0$ with x > 0.

Section 5.4 Example 2: Solve the given initial value problem: $x^2y'' - 5xy' + 9y = 0$, with x > 0, y(1) = -2, y'(1) = -4. Then, find y(e).

Section 5.5 Example 1: For the differential equation:

$$(x^2 + 3x^3)y'' + xy' + (x^2 - 4)y = 0$$

- (a) Show that the point $x_0 = 0$ is a regular singular point (Either by using the limit definition or by computing the associated Euler equation).
- (b) Compute the recursion formula for the series solution corresponding to the larger root of the indicial equation. With $a_0 = 1$, write down the first three nonzero terms of the series.

Section 6.1 Example 1: Using the definition, compute the Laplace Transform of the function $f(t) = \begin{cases} t & , 0 \le t < 1 \\ 1 & , 1 \le t \le \infty \end{cases}$.

Section 6.2 Example 1: Solve the initial value problem by using the Laplace transform:

$$y'' - 4y' + 4y = 3, \ y(0) = 0, \ y'(0) = 1$$