Instructions: Please show all your work in the space provided, no credit will be given if appropriate work is not shown. Clearly box your answer.

1. (5 points) A mass weighing 8 lb stretches a spring 3 inches. Suppose the mass is given an additional 4 inches of displacement in the positive direction and then released. The mass is in a medium that exerts a viscous resistance of 6 lb when the mass has a velocity of $3 \mathrm{ft} / \mathrm{s}$. Formulate (but DO NOT SOLVE) the initial value problem that governs the motion of the mass.

$$
\begin{aligned}
& w=8 \\
& L=3 \text { in }=\frac{1}{4} \mathrm{ft} \\
& W=M g \Rightarrow M=\frac{w}{9}=\frac{8}{32}=\frac{1}{4} \\
& W=K L \Rightarrow K=\frac{w}{L}=\frac{8}{114}=32 \\
& \gamma=\frac{6}{3}=2
\end{aligned}
$$

$$
\begin{aligned}
& m u^{\prime \prime}+\gamma u^{\prime}+k u=0 \\
& \frac{1}{4} u^{\prime \prime}+2 u^{\prime}+32 u=0
\end{aligned}
$$

$$
\begin{array}{r}
\text { or } \quad u^{\prime \prime}+8 u^{\prime}+128 u=0, u(0)=\frac{1}{3} \\
\text { and } u^{\prime}(0)=0
\end{array}
$$

2. (5 points) Find the particular solution of $\frac{d^{2} y}{d t^{2}}+9 y=81 \sec ^{2}(3 t)$.

$$
\begin{aligned}
& y_{h}: r^{2}+9=0 \Rightarrow r= \pm 3 i \\
& y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
\end{aligned}
$$

Use the method "Variation of parameters" since $g(t)=81 \sec ^{2}(3 t)$.

$$
\begin{aligned}
& \text { Suppose } y_{1}=\cos (3 t) \text { and } y_{2}=\sin (3 t) \\
& W=\left|\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right|=3 \\
& u=-\int \frac{9 y_{2}}{9 \omega} d t=-\int \frac{81 \sec ^{2}(3 t) \cdot \sin (3 t)}{3} d t=-27 \int \frac{\sin (3 t)}{\cos ^{2}(3 t)} d t=-\frac{9}{\cos (3 t)}+C_{1} \\
& o r-9 \sec (3 t)+c_{1} \\
& V=\int \frac{g y_{1}}{9 \omega} d t=\int \frac{81 \sec ^{2}(3 t) \cdot \cos (3 t)}{3} d t=27 \int \sec (3 t) d t=9 \ln \left(\sec (3 t)+\tan (3 t) \mid+c_{2}\right. \\
& \text { So, } y=x y_{1}+v y_{2}=\left(-9 \sec (3 t)+c_{1}\right) \cos (3 t)+\left(9 \ln |\sec (3 t)+\tan (3 t)|+c_{2}\right) \sin (3 t) \\
& =-9+9 \ln \left(\sec (3 t)+\tan (3 t) \mid \sin (3 t)+C_{1} \cos (3 t)+C_{2} \sin (3 t)\right.
\end{aligned}
$$

Therefore, $y_{p}=-9+9 \ln / \sec (3 t)+\tan (3 t) / \sin (3 t)$

