Math 39100 : Mar. 27.2023 : Lecture 16
Quiz 4: Monday, April 3 (on 3.6, and 3.7/3.8)
Exam 2: Monday, May 1
Exam 3: (optional) Friday, May 12

CHS: Series Solutions of D.E:
§5.1 Review of power Series
Def: A power sexes is a series of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ Centered at $x=x_{0}$.

Notation: $\sum_{n=0}^{\infty \rightarrow \text { end }(x) \text { font }} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ sm
starting print
Finite sum : $\sum_{n=0}^{k} a_{n} x^{n}=a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots+a_{k} x^{k}$
Centered at $x_{0}=0 \Rightarrow \sum_{n=0}^{\infty} a_{n}(x-0)^{n}=\sum_{n=0}^{\infty} a_{n} x^{n}$

Properties:
(i) $\sum_{n=0}^{\infty} a_{n} \pm \sum_{n=0}^{\infty} b_{n}=\sum_{n=0}^{\infty}\left[a_{n} \pm b_{n}\right]$
(ii) If $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converses, than $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
(*) Most common test to test for absolutely converjence of a pours series is the Ratio Test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

(i) if $L<1$, then $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
(ii) if $L>1$, then $\sum_{n=0}^{\infty} a_{n}$ diverges.
(iii) if $L=1$, then the test fris (inconclusive)

This gives is two things: I.O.C and R.O.C.
Determine the radius of convergence of the power series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n 2^{n}}
\end{aligned} \quad \begin{aligned}
& a_{n}=\frac{(x+1)^{n}}{n 2^{n}} \\
& a_{n+1}=\frac{(x+1)^{n+1}}{(n+1) 2^{n+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|= \lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n+1}}{(n+1) 2^{n+1}} \cdot \frac{n \cdot 2^{n}}{(x+1)^{n}}\right| \\
&= \lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n}(x+1)}{(n+1) \cdot 2^{n} \cdot 2} \cdot \frac{n \cdot 2^{n}}{(x+1)^{n}}\right| \\
&= \lim _{n \rightarrow \infty}\left|\frac{(x+1) \cdot n}{2(n+1)}\right| \\
&=|x+1| \cdot \underbrace{\lim _{n}\left|\frac{n}{2(n+1)}\right|}_{n \rightarrow \infty} \\
&=|x+1| \cdot \frac{1}{2}<1 \\
& \frac{1}{2}|x+1|<1 \\
&|x+1|<2 \\
&-2<x+1<2 \\
& \quad-3<x<1 \\
& \text { I I o. c: }(-3,1)
\end{aligned}
$$

(feel fie to
 test the and parts
R.O.C: $\quad 1--3=4$

Radius of Convergence is denoted by $\rho=\frac{4}{2}=2$
(iii) Shifting indices of a summation:

$$
\sum_{n=0}^{\infty} a_{n}=\sum_{k=0}^{\infty} a_{k} \quad n_{1} k \text { are dummy }
$$

Write $\sum_{n=2}^{\infty} a_{n} x^{n}$ as a series whose first term corresponds to $n=0$ rather than $n=2$.
let $k=n-2 \Rightarrow n=k+2$

$$
\begin{array}{cl}
n=2, & k=0 \\
n=\infty, & k=\infty
\end{array}
$$

$$
\sum_{k=0}^{\infty} a_{k+2} x^{k+2}
$$

(iv) let's suppose f is a differentiable function.
then

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots \\
& f^{\prime}(x)=a_{1}+2 a_{2}\left(x-x_{0}\right)+3 a_{3}\left(x-x_{0}\right)^{2}+\cdots=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
& f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3}\left(x-x_{0}\right)+\cdots=\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}
\end{aligned}
$$

(u) A function con be approxineted by using) Taylor Series:

$$
f(x)=\sum_{n=0}^{\infty}\left[a_{n}\right)\left(x-x_{0}\right)^{n}
$$

where $a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$
5.2 Series Solutions near on Ordinary point, part I.

Consider Diff. equation of the form:

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

Where $P(x), Q(x)$ and $R(x)$ we functions of the indef. variable x.
def: A point x_{0} such that $P\left(x_{0}\right) \neq 0$ is called an ordinary point.
We ar going assure the solution form is

$$
\begin{array}{ll}
& y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \\
\Rightarrow & \quad \text { for simplicity assume } x_{0}=0 \\
\Rightarrow & y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{array}
$$

Goal is to find these coeff. $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$
Find a series solution of the equation $\quad\left[x_{0}=0\right]$

$$
y^{\prime \prime}+y=0, \quad-\infty<x<\infty .
$$

Assume $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a solution
from ch 3 :
and $y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$.

$$
\begin{gathered}
y^{\prime \prime}+y=0 \\
r^{2}+1=0 \\
r= \pm i
\end{gathered}
$$

$$
\begin{array}{r}
y=c_{1} \cos (x)+ \\
c_{2} \sin (x)
\end{array}
$$

Now, plus in y and $y^{\prime \prime}$ into the given e_{q} :

$$
\begin{aligned}
& \Rightarrow \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \text { (13) Powers to } k \\
& \Rightarrow n=k=n \\
& k=n
\end{aligned}
$$

$$
\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}+\sum_{k=0}^{\infty} a_{k} x^{k}=0
$$

$$
\Rightarrow \sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2}+a_{k}\right] x^{k}=0
$$

$$
\Rightarrow \quad(k+2)(k+1) a_{k+2}+a_{k}=0
$$

(1) Solve for the hishost surscurt

$$
a_{k+2}=\frac{-a_{k}}{(k+2)(k+1)} \quad k=0,1,2, \ldots
$$

Recurence formula (frule for the Coefficrente)

$$
\begin{aligned}
& k=0, \quad a_{2}=-\frac{a_{0}}{2.1}=-\frac{a_{0}}{2} \\
& k=1, \quad a_{3}=-\frac{a_{1}}{3.2}=-\frac{a_{1}}{6} \\
& k=2, \quad a_{4}=\frac{-a_{2}}{4.3}=\frac{a_{0}}{4.3 .2} \\
& k=3, \quad a_{5}=-\frac{a_{3}}{5.4}=\frac{a_{1}}{6.5 .4}
\end{aligned}
$$

Solution : $y=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$.

$$
=a_{0}+a_{1} x-\frac{a_{0}}{2} x^{2}-\frac{a_{1}}{6} x^{3}+\frac{a_{0}}{4 \cdot 3 \cdot 2} x^{4}+\frac{a_{1}}{6 \cdot 5 \cdot 4} x^{5}+\ldots
$$

$$
\begin{aligned}
y= & a_{0}(\overbrace{1-\frac{1}{2} x^{2}+\frac{1}{4 \cdot 3 \cdot 2} x^{4}+\cdots}^{y_{1}}) \\
& +a_{1}(\overbrace{x-\frac{1}{6} x^{3}+\frac{1}{6 \cdot 5 \cdot 4} x^{5}+\cdots}^{y_{2}})
\end{aligned}
$$

$$
y=a_{0} \cos (x)+a_{1} \sin (x)
$$

where $\quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$
and $\quad \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$

